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Differential Structure of Greechie Logics
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A liaison between quantum logics and non-commutative differential geometry is
outlined: a class of quantum logics are proved to possess the structure of discrete
differential manifolds. We show that the set of proper elements of an arbitrary
atomic Greechie logic is naturally endowed by Koszul’s differential calculus.

INTRODUCTION

In this paper we explore a liaison between quantum logic and noncommu-
tative geometry. Namely, we show that there is a class of quantum logics
which carries a natural differential structure.

It was established by Koszul (1960) that differential calculus on smooth
manifolds admits a purely algebraic reformulation in terms of graded differen-
tial modules over algebras of smooth functions. Several versions of noncom-
mutative geometry—operator extensions of classical (sometimes called
commutative) geometry—stem from Koszul’s formalism. Geometrical mod-
els based on finite-dimensional algebras have been of particular interest
(Baehr et al., 1995; Zapatrin, 1997) due to their possible relevance to “empiri-
cal quantum geometry.” This research resulted in the formalism of discrete
differential manifolds—finite sets whose algebra of functions is endowed
with a “differential envelope.” It was proved that many classical geometrical
features (Dimakis and Müller-Hoissen, 1998) survive in these models.

This paper is organized as follows. In Section 1 we associate (following
Rota, 1968) with an arbitrary poset P a noncommutative algebra V called
the incidence algebra of P. Then we show that if P is “good enough,” the
algebra V acquires some useful properties, for instance, becomes graded. In
Section 2 we give a brief outline of Koszul’s (1960) formalism of the calculus
of differentials and introduce the general notion of discrete differential mani-
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fold. In Section 3 we introduce a class of posets, called differentiable, which
can be treated as discrete differential manifolds, and, finally, show that atomic
Greechie logics are always differentiable.

1. INCIDENCE ALGEBRAS

1.1. Algebras of Scalars in Dirac’s Notation

Let P be a set. Denote by * the space of all finite formal linear combina-
tions of elements of P written as Dirac’s ket vectors:

* 5 span{.p&}pPP (1)

and by ** the dual to * spanned on the basis of bra vectors:

** 5 span{^q.}qPP

such that

^p.q& 5 dpq 5 H1 if p 5 q
0 otherwise

(2)

Now consider the set of symbols .p&^p. for all p P P and its linear span

! 5 span{.p&^p.}pPP (3)

and endow it with the operation of multiplication

.p&^p. ? .q&^q. 5 .p&^p.q&^q. 5 H.p&^p. if p 5 q
0 otherwise

(4)

making ! an associative and commutative algebra.
We have defined ! as an algebra of formal symbols (3). However, the

elements of ! can be treated as operators on both *,

(.p&^p.).q& :5 .p&^p.q& 5 H.p& if p 5 q
0 otherwise

and **,

^q.(.p&^p.) :5 ^q.p&^p. 5 H^p. if p 5 q
0 otherwise

1.2. Incidence Algebras of Posets and Their Moduli of Differentials

The notion of the incidence algebra of a poset was introduced by Rota
(1968) in a purely combinatorial context. Let P be a partially ordered set:
P 5 (P, #). Take all ordered pairs p, q of elements of P, form the linear hull
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V 5 span{.p&^q.}p#q (5)

and extend the formula (4) to define the product in V:

.p&^q. ? .r&^s. 5 .p&^q.r&^s. 5 ^q.r& ? .p&^s. 5 H.p&^s. if q 5 r
0 otherwise

(6)

One may doubt the correctness of this definition of the product: who
guarantees that .p&^s. is still in V when q 5 r? But recall that P is partially
ordered: .p&^q. P V , .q&^s. P V means p # q and q # s, therefore p # s,
that is why .p&^s. P V . The obtained algebra V with the product (6) is called
the incidence algebra of the poset P.

The incidence algebra V is obviously associative, but not commutative
in general. The algebra ! of scalars is a maximal commutative subalgebra
of V .

Let us split V considered as a linear space rather than an algebra into
two subspaces

V 5 ! % 5

and call

5 5 span{.p&^q.}p,q

the module of differentials of the poset P. In fact, it follows directly from
(6) that for any a P ! and any v P 5 both av and va are in 5. It also
follows directly from (6) that for any a, b P !, v P 5,

(av)b 5 a(vb)

Therefore the module of differentials 5 is always !-bimodule.2

1.3. Incidence Algebras of Jordan–Hülder Posets

Recall that a poset P is said to satisfy the Jordan–Hölder condition
(Birkhoff, 1967) if, for any ordered pair p, q P P, p , q, the lengths of all
maximal chains p , r , . . . , s , q are equal. In this case with every
basic element .p&^q. of V the following nonnegative integer can be associated:

deg.p&^q. 5 the length of a maximal chain between p and q (7)

splitting V into linear subspaces

V 5 V0 % V1 % . . . (8)

with

2 Although ! is commutative, av Þ va in general.
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V0 5 span{.p&^p.} 5 !

Vn 5 span{.p&^q.}deg.p&^q.5n

making V a graded algebra:

∀v P Vm, v8 P Vn vv8 P Vm1n

and therefore making the module of differentials 5 a graded !-bimodule:

5 5 V1 % V2 % . . .

2. GRADED DIFFERENTIAL ALGEBRAS

An algebraic version of differential calculus on manifolds due to Koszul
(1960) is presented in this section. It admits powerful generalizations which
gave rise, in particular, to noncommutative geometry [in the Dubois-Violette
version; see Djemai (1995) for an outline].

Let } be a smooth manifold. Denote by ! the algebra of smooth
functions on } and by 7* the cotangent bundle over }:

! 5 C `(}); 7 5 T*(})

The elements of the exterior product 7* ∧ . . . ∧ 7* are called differential
forms. Denote

V0 5 ! the space of scalars

V1 5 7* the space of 1-forms

Vn 5 ∧n7* the space of n-forms

and form the direct sum

V 5 V0 % V1 % . . .

which is a graded algebra with respect to the exterior product ∧ of differen-
tial forms:

∀v P Vm, v8 P Vn v ∧ v8 P Vm1n

The module of differentials

5 5 V1 % V2 % . . .

is a graded !-bimodule. In classical differential geometry ∀a P !, v P
Vn, av 5 va.

An important operator defined on V makes it a differential calculus.
This is the Cartan differential D: V → V , which has the following properties:
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D(Vm) # Vm11

D2 5 0

D1 5 0 (where 1 is the unit element (9)
of the algebra !)

∀v P Vm, v8 P Vn D(v ∧ v8) 5 Dv ∧ v8 1 (21)mv ∧ v8

In general, a graded algebra V built from an algebra ! endowed with
an operator D satisfying (9) is called a differential calculus over the algebra !.

The entire differential structure of the manifold } is captured in its
differential algebra V . For instance, the space of vector fields is the dual to V1.

Differential calculi over finite-dimensional commutative algebras were
thoroughly studied in the last decade. As a result of this research an analog
of (pseudo-) Riemannian geometry on finite and discrete sets was built (Baehr
et al., 1995; Dimakis and Müller-Hoissen, 1998). The triples

(P, V(P), D)

are referred to as discrete differential spaces, where P is a set (at most
countable), and (V(P), D) is a graded differential algebra over the algebra
! of scalars on P.

We show that if we take a Greechie logic +, then the order structure
on + induces (in unambiguous way!) a differential calculus making it a
discrete differential space.

3. DIFFERENTIAL CALCULI ON GREECHIE LOGICS

3.1 Differentiable Posets

A poset P is said to be differentiable if it (a) possesses the Jordan–Hölder
property (see Section 1.3) and (b) admits an operator d on the space * of
scalars on P, d: * → * such that

d 2 5 0
(10)

deg.dp&^q. 5 deg.p&^q. 1 1

where deg is the degree of elements of the incidence algebra V(P) defined
as in (7): let d.p& 5 ( es.s&; then .dp&^q. denotes the sum of only such es.s&
for which .s&^q. P V .

When P is a differential poset we are always in a position to define the
operator D: V → V as follows:

D(.p&^q.) :5 .dp&^q. 2 (21)deg.p&^q..p&^qd. (11)

where ^qd. is the action of the adjoint to d operator on bra vectors: see
(15) below.
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We claim that the operator D has the properties of a Cartan differential.
Verify the conditions (9) for D. Let .p&^q. P Vm then

deg.dp&^q. 5 deg.p&^q. 1 1

according to (10). To verify the second condition, calculate the value of D1
on an arbitrary basic vector .r& of *. Since 1 5 (.p&^p. we have

D1.r& 5 1o
pPP

D.p&^p.2.r& 5 o
pPP

.dp&^p.r& 2 o
pPP

.p&^pd.r&

5 .dr& 2 1o
pPP

.p&^p.2.dr& 5 .dr& 2 1.dr& 5 0

To verify the third condition (9), let v 5 .p&^q. with deg.p&^q. 5 m and
let v8 5 .r&^s. with deg.r&^s. 5 n. Then

D(vv8) 5 ^q.r&D.p&^s. 5 ^q.r&(.dp&^s. 2 (21)m1n.p&^sd.)

On the other hand, we have

Dv ? v8 5 (.dp&^q. 2 (21)m.p&^qd.).r&^s.

5 ^q.r&.dp&^s. 2 ^q.d.r&(21)m.p&^s.

v ? Dv8 5 .p&^q.(.dr&^s. 2 (21)n^q.r&.p&^sd.)

Therefore

Dv ? v8 1 (21)mv ? Dv8 5 ^q.r&(.dp&^s. 2 (21)m1n.p&^sd.)

5 D(vv8)

So, we conclude that any differential poset becomes a discrete differential
manifold whenever a border operator d, (10), is specified.

3.2. Differential Structure on Simplicial Complexes

A simplicial complex _ 5 (_, V ) is a collection _ of of nonempty
subsets (called simplices) of a set V (called the set of vertices of _) such that

∀s, s8 # V s P _ and s8 # s imply s8 P _

In particular, a simplex is a complex consisting of all nonempty subsets
of the set of its vertices.

Any simplicial complex _ consists of simplices which are, in turn, sets.
That is why _ is partially ordered by set inclusion. With any simplex p a
positive integer #p is associated from the cardinality of p considered set:
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#p 5 card{v P V : v P p} 2 1

Consider the incidence algebra V 5 V(_) (Section 1.2) of the complex _.
With any .s&^t. P V we associate

deg.s&^t. :5 #s 2 #t (12)

making the algebra V graded:

V 5 V0 % V1 % . . .

In any simplicial complex the border operator d is defined

d.p& 5 o es.s& (13)

with es 5 61 such that

d 2 5 0

∀v P V d.v& 5 0 (14)

if #p 5 m, then for any s from (13) #s 5 m 2 1

The adjoint to d, called the coborder operator, acts in **. Due to Dirac’s
notation we may use the same symbol d for both border and coborder operators
with no confusion:

d: ^p. ° ^pd.

so that

^p.dq& 5 ^pd.q& 5 ^p.d.q& (15)

Let us verify the conditions (10) for an arbitrary simplicial complex _.
The first condition (10) follows from the first condition (14) and the second
condition (10) follows from (12) and the third condition of (14); therefore:

• Any simplicial complex _ is a differentiable poset.
• The border operator on _ makes the set of its simplices a discrete

differential manifold.

3.3. The Differential Structure on Atomic Greechie Logics

An atomic s-orthomodular poset + is called an atomic Greechie logic
if it can be represented as a union of almost disjoint Boolean algebras:

+ 5 øi @i
(16)

@i ù @j 5 F{0, 1}
{0, 1, v, v8}

where v is an atom of +.



1034 Breslav and Zapatrin

Let + be a Greechie logic with the set of atoms V. In this section we
show that the poset P of proper elements of +,

P:5 + \{0, 1} (17)

is differentiable and build the border operator on P making it a discrete
differential manifold.

Let us build the simplicial complex _ 5 (_, V ) starting from the
decomposition (16) of +. The set V of atoms of + will be the set of vertices
of _. A nonempty subset s # V will be a simplex of _ whenever s is a
proper (sic!) subset of atoms of a block @i of +:

_ :5 {s # V: ∃@i s , V(@i), s Þ 0, V(@i)}

where V(@i) is the set of atoms of the block @i. The poset P is Jordan–Hölder.
To prove it, let p, q P P, p Þ q; then (since they are proper elements of +)
there is a unique block @i from (16) which contains them. We put

deg .p&^q.:5 #i q 2 #i p (18)

as in (12) with

#i p 5 card {v P @i: v # p}

With every simplex s P _ an element of the poset P, (17), can be
associated. Take the mapping f from _ to +

f(s) :5 ~+ {v P V: v P s} (19)

which is surjective (since any element of P is contained in a block and thus
can be expressed as a join of atoms), but not injective (since an element of
P can belong to more than one block).

Extend the mapping (19) to f : *(_) → *(P) by linearity and introduce
the border operator on *(P):

d.p& :5 o
f(s)5p

.f(ds)& (20)

and verify the conditions (10). First calculate its square:

d 2.p& 5 o
f(s)5p

d.f(ds)& 5 o
f(s)5p

d o ets.f(ts)& 5 o
s

f(.dds&) 5 0

The second condition (10) follows from (18) since for any component of the
right-hand side of the sum

.dp&^q. 5 o
s:f(s)5p

.f(ds)&^q.

is in a unique block in accordance with (16).
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So, the set P of all proper elements of an arbitrary atomic Greechie
logic becomes a discrete differential manifold.
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